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Comparison-Based Learning of Relational Categories (You’ll Never Guess)

John D. Patterson and Kenneth J. Kurtz
Binghamton University

BA BA
In accord with structural alignment theory, same-category comparison opportunities within a classifica-
tion learning task should promote relational category acquisition. However, a straightforward merging of
the classification paradigm with copresentation of same-category item pairs does not yield an advantage
relative to an equal number of single-item exposures. In 3 experiments, we explore the hypothesis that
the traditional classification learning mode (guess-and-correct) and comparison have a previously
unforeseen incompatibility. In Experiment 1, we test this hypothesis by contrasting classification with
supervised observational learning (passive study of labeled examples) under 3 presentation formats:
same-category pairs, mixed pairs, and single-item. We find an observational advantage with same-
category pairs and produce the elusive advantage over single-item exposures. In Experiment 2, we assess
the generality of the learning mode effect by testing both same- and different-category comparison. The
observational advantage replicates and extends to different-category comparison—although, we do not
find a significant difference between the 2 types of comparison. In Experiment 3, relative to the
classification mode, we find enhanced performance in an intermediate learning mode between classifi-
cation and observation in which participants are instructed to make a covert category guess (without
making an actual response) before seeing the correct category label. Implications and interpretations—
including our interpretation that the performance emphasis inherent in classification learning undermines
the benefits that arise from comparison opportunities—are discussed.

Keywords: relational categories, comparison, classification learning, observational learning, transfer

Supplemental materials: http://dx.doi.org/10.1037/xlm0000758.supp

Categorization and comparison are mechanisms that play a
central role in human learning, comprehension, and knowledge
use. The processes of comparison and categorization interface in a
number of critical ways in current psychological understanding:
from similarity as the basis for determining category membership
to categories based on analogies among their members. From a

theoretical perspective, we address the broad question of how the
joint processing of multiple examples (noting that such juxtaposi-
tions are myriad and arise from spatial, temporal, or symbolic
origins; Gentner, 1989) impacts concept formation. From an ap-
plied perspective, educators need every advantage in promoting
the speed and quality of concept acquisition—we need to know
how techniques grounded in core cognitive processes can be
formulated to achieve better classroom impacts and outcomes. The
question of how to productively integrate two such broad and
powerful mechanisms (comparison and supervised inductive cat-
egorization) is a direct and compelling concern. As Goldwater and
Schalk (2016) lay out, relational categories are heavily embedded
in formal education, so investigating relational category acquisi-
tion helps in the important work of advancing toward psycholog-
ical explanation that treats natural categories acquired in real
learning situations.

Attribute-Based Versus Relational Categories

In the study of human category learning, researchers have gen-
erally turned to well-controlled, artificial stimuli that belong to
categories based on their independent attributes. These attribute
categories have been studied under a diverse set of task circum-
stances (see Kurtz, 2015) including learning by inference of miss-
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ing features (see Markman & Ross, 2003), unsupervised category
construction (e.g., Ahn & Medin, 1992; Pothos et al., 2011), and
passive, observational study of labeled examples (e.g., Estes, 1994;
Levering & Kurtz, 2015). However, the dominant approach has
been the classification learning paradigm (Markman & Ross,
2003). In its canonical form, classification consists of a guess-and-
correct cycle in which a single stimulus is presented, the learner
makes a guess from provided category label options, and correc-
tive feedback is provided. The study of attribute/feature-based cat-
egories via classification has unequivocally advanced our understand-
ing of human category acquisition and provided a useful basis for
comparing different formal models of categorization (e.g., ALCOVE,
Kruschke, 1992; DIVA, Kurtz, 2007, 2015; SUSTAIN, Love, Medin,
& Gureckis, 2004).

Much of the category knowledge we possess, however, is not
reducible to lists of independent attributes (Murphy & Medin,
1985). Rather, relational categories like revenge are more abstract
and depend on core relationships rather than on the presence of
particular attributes or objects (Gentner & Kurtz, 2005). We pos-
sess a wealth of knowledge about the ways objects and attributes
in the world relate to one another (see Gentner, 1981, 1982)—and
this structural knowledge meaningfully picks out kinds in the
world. Accordingly, an increased emphasis has emerged address-
ing the nature and acquisition of relational categories (e.g., Asmuth
& Gentner, 2017; Corral & Jones, 2014; Gentner & Kurtz, 2005;
Goldwater & Markman, 2011; Goldwater, Markman, & Stilwell,
2011; Goldwater & Schalk, 2016; Higgins, 2017; Markman &
Stilwell, 2001; Rehder & Ross, 2001; Rottman, Gentner, & Gold-
water, 2012). Relational categories (e.g., gift, robbery, sibling,
barrier, reciprocity) are categories whose members share a com-
mon set of relations between objects and/or attributes (i.e., a shared
relational structure). Because relational categories need only share
a common relational structure, the members tend to be quite
disparate in their surface attributes. In fact, what holds members
together is more analogical similarity than literal similarity. Given
the all-or-none constraint placed on membership, relational con-
cepts can be interpreted as rule-like knowledge structures (see
Gentner & Medina, 1998). That is, relational criteria may be used
to categorize members relatively unambiguously—in a way akin to
the classical, definitional view of categorization (Gentner & Kurtz,
2005).

Comparison: A Possible Mechanism for Relational
Category Learning

A key question that bears both theoretical and applied import is:
how do we acquire relational category knowledge? Drawing on the
analogical transfer literature, a promising candidate mechanism is
learning via comparison. Considerable research has shown that
simultaneous comparison of cases facilitates the acquisition and
transfer of relational concepts (see Alfieri, Nokes-Malach, & Sc-
hunn, 2013, for a review and meta-analysis; see also Loewenstein,
2010). The benefits of comparison to relational learning have been
observed across a wide array of learning domains—mathematics
(Ming, 2009; Rittle-Johnson & Star, 2007, 2009), science (Kurtz &
Gentner, 2013), negotiation (Loewenstein, Thompson, & Gentner,
1999, 2003), and engineering (Gentner et al., 2016)—as well as
with stimuli both verbal (e.g., Catrambone & Holyoak, 1989; Gick
& Holyoak, 1983; Gick & Paterson, 1992) and visual-perceptual

(e.g., Gentner & Namy, 1999; Kotovsky & Gentner, 1996; Kurtz,
Boukrina, & Gentner, 2013; Namy & Clepper, 2010; Namy &
Gentner, 2002). Prevailing theory holds that comparison benefits
arise though structural alignment (Gentner & Markman, 1997;
Markman & Gentner, 1993b) in which the shared relational pred-
icates of compared instances are brought into alignment—serving
to highlight shared relational structure, as well as alignable differ-
ences (Markman & Gentner, 1993a). Importantly, this alignment
process paves the way for abstraction and renders the common
relational structure more portable for transfer to surface-dissimilar
domains.

Despite the wealth of evidence supporting the benefits of com-
parison to learning and transfer, the evidence in the relational
categorization literature has been somewhat mixed. Comparison
has been found to promote relational categorizations in the rela-
tional match-to-sample task—a task where an exemplar is given
and participants must match it to one of two samples: one that
matches relationally and another that matches based on common
theme or perceptual characteristics. Relational match-to-sample
task studies using both children and adults have shown a boost in
relational categorization when comparison opportunities are pro-
vided (Christie & Gentner, 2010; Gentner, Anggoro, & Klibanoff,
2011; Gentner & Namy, 1999; Goldwater & Markman, 2011; Son,
Smith, & Goldstone, 2011). The increased rate of relational cate-
gorization seen across these studies strongly suggests that partic-
ipants were engaging in structural alignment—allowing them to
discover and use common relational structure in their categoriza-
tions. The evidence from these studies, as well as a host of others
in the analogical transfer literature, indicate that engaging in same-
category comparison should yield the familiar benefits of struc-
tural alignment and promote not just increased relational respond-
ing, but also enhanced learning and transfer.

Failures of Same-Category Comparison: Previous and
Preliminary Work

When the acquisition and transfer of relational knowledge
within an inductive category learning task has been the target of
study, the picture has been markedly different. The natural ap-
proach is a paired-exemplar variant of the traditional classification
paradigm such that on each trial the learner is presented with two
exemplars, queried for their category membership, and provided
with corrective feedback for both items. Guided by predictions that
follow from the structural alignment view, providing learners with
same-category comparison opportunities during training should
produce enhanced category acquisition (via training and transfer
measures) relative to providing learners with an equal number of
one-at-a-time stimulus exposures (single-item learning). The logic
behind this prediction is straightforward: (a) comparison has been
widely shown to benefit the acquisition of core relations through
induction; (b) the classification learning mode is a reliable plat-
form for learning novel categories through induction; therefore (c)
combining comparison with the classification learning mode
should provide a potent platform for learning novel relational
categories through induction. Curiously though, we know of no
successful realization of this formula. One attempt by Kurtz and
Gentner (1998) revealed that twice as many stimulus exposures
could produce a reliable advantage over single-item learning, but
when controlling for the number of stimulus exposures between
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learning conditions, no such comparison advantage was found
(Kurtz & Boukrina, 2004).

The comparison manipulations utilized in these studies were
relatively nonintensive—therefore, a plausible account of these
failures is that the comparison engine was simply not engaged to
a sufficient degree (see Kurtz, Miao, & Gentner, 2001). In prelim-
inary work for the present investigation, we explored this possi-
bility in a series of attempts to boost joint consideration and
alignment. In one case we simply elicited similarity ratings from
learners prior to making classification decisions on each learning
trial—a technique known to encourage alignment (e.g., Goldwater
& Markman, 2011; Markman & Gentner, 1993b). When this did
not work, we attempted a more heavy-handed approach: learners
were instructed to produce explicit element-to-element alignments
(e.g., Doumas & Hummel, 2013; Kurtz et al., 2001) by drawing
correspondence lines between elements that played similar roles in
their exemplars before making classifications on each trial. Once
again, an established method for encouraging alignment failed to
elicit a comparison advantage.

The Guess-and-Correct Cycle as an
Obstructing Factor

One account of this string of failures is that same-category
comparison simply does not benefit the acquisition of relational
kinds, but this is difficult to reconcile with the surfeit of evidence
for comparison-based learning (see Corral, Kurtz, & Jones, 2018).
The impetus for the present investigation is the possibility that
some aspect of the task environment is acting in opposition to the
expected benefits of comparison. There is a key difference in task
environment between the failures and the plethora of studies
showing comparison benefits: the integration of comparison with
the classification learning mode. Thus, a plausible account of these
failures is that the classification mode in some way obstructs the
benefits of same-category comparison.

We consider several factors that come into play. First, classifi-
cation is based on an extended series of trials (i.e., training blocks)
providing a large number of varied comparison opportunities.
Presumably this would boost the potential impact of comparison
(though one could also imagine a mitigating fatigue factor). The
lightweight nature of these comparison opportunities is also a
notable difference, but our preliminary studies showed no impact
of employing a more robust comparison task. Second, classifica-
tion brings with it a performance emphasis (i.e., learners strive to
produce a high rate of correct answers and reach a stopping
criterion). Given it is performance on the classification task, rather
than concept learning per se, that is emphasized, strategies that
allow participants to perform well with relatively low effort during
training tend to be favored (see Levering & Kurtz, 2015). One
strategy that is readily available, due to the trial structure in a
uniform same-category comparison learning format, is a “pick-the-
best” approach. Under this strategy, participants make classifica-
tion decisions for both stimuli based on whichever stimulus they
are most confident about. As such, joint consideration of the
copresented items may be engaged merely as a tool to ascertain
which item is more clearly associated with a particular category,
rather than as a vehicle for alignment, highlighting, and abstraction
(see Kurtz et al., 2013). It follows clearly how this would under-
mine a predicted comparison-based learning effect.

A “pick-the-best” account alone, however, is seemingly insuf-
ficient to explain the apparent incompatibility between comparison
and classification learning. If this strategy were the only barrier,
our attempts at enhancing comparison engagement ought to have
counteracted the negative effects of it. Why did these engagement
attempts not improve the effectiveness of comparison? An addi-
tional dynamic is that there is quite a bit going on in a task with
repeated trials of two items being presented, classified, and eval-
uated for correctness. We consider the learner’s theory of task to be
their derived interpretation of what they need to accomplish in the
learning setting and how best to achieve it. Learners are afforded
with degrees of freedom in deciding if, and to what extent, they
engage in or rely upon each element of the learning experience.
We posit that the supervisory feedback of classification may bias
learners to perceive the guess-and-correct cycle to be the most
central component. Without any direction or supervision of the
comparison component, and without a definitive indication as to
whether or how comparison is linked to their performance in the
classification task, the comparison component may be seen as an
inconsequential facet of the task. Thus, participants may prioritize
the guess-and-correct cycle and allocate insufficient resources to
comparison—even with additional task components meant to en-
courage the comparison process.

The Observational Mode: Removing the
Guess-and-Correct Cycle

These proposed explanations are presumably not exhaustive—
other accounts related to available resources or the integration of
the two task components may be plausible. What is clear is that the
stark contrast in the effect of comparison between studies where
comparison is embedded in the classification learning mode versus
the rest of the literature strongly implicates the classification
learning mode as an obstruction to making fruitful comparisons.
Accordingly, we predicted that removing the guess-and-correct
cycle from the task environment would lead to the expected
benefits of same-category comparison over single-item learning.
To this end, in Experiment 1, we use the supervised observational
mode—a task that is informationally equivalent to the classifica-
tion mode (i.e., both tasks provide a complete example and a class
label), but not procedurally equivalent, in that it requires only the
passive study of items with their category labels instead of active
prediction. Despite matching on information provided, the key
procedural difference (i.e., the guess-and-correct cycle) was
expected to lead to differences in what learners would be able to
extract from comparison opportunities.

We compare the observational mode to the classification learn-
ing mode under three presentation formats (same-category pairs,
mixed pairs, and single-item). This design allows a number of
potentially fruitful comparisons highlighted by allowing us to test
the prediction of more successful category acquisition through
same-category comparison opportunities in the observational
learning mode relative to (a) the same comparison opportunities in
classification mode; (b) a baseline of single-item learning; and (c)
the current best practice for promoting relational category learn-
ing—an even mixture of same- and different-category comparison
opportunities (Kurtz et al., 2013).
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Overview of Experiments

In these experiments, we investigate how learning mode and
comparison influence the acquisition and transfer of relational
category knowledge. In Experiment 1, we evaluate how these two
learning modes affect learning from same-category pairs, mixed
pairs, and single-item formats—showing that learning mode plays
a vital role in the success of same-category comparison. In Exper-
iment 2, we replicate the effect of learning mode on same-category
comparison and extend it to contrastive comparisons. We find that
both types of comparison are aided by the removal of the guess-
and-correct cycle, but that comparison type does not exert an effect
on overall learning outcomes. In Experiment 3, we conduct a
replication with extension and, further, attempt to explicate the
reason(s) for the incompatibility between classification and com-
parison. To this end, we construct two novel learning conditions,
intermediate on a classification-observational continuum, and find
evidence that deficits associated with the classification mode are
linked to the task’s emphasis on performance.

Experiment 1

The purpose of this experiment was to assess the impact of
learning mode on relational category learning. We used a 3 (pre-
sentation type: same-category pairs, mixed pairs, single-item) � 2
(learning mode: classification, observational) design. Our core
prediction was that same-category comparison would result in
better learning under the observational mode than in the classifi-
cation mode and would produce an advantage over single-item
learning with equivalent item exposures. We also sought a con-
ceptual replication of the advantage of mixed pairs comparison
over single-item in the classification learning mode (seen in Kurtz
et al., 2013)—including substantial alterations to the procedure
(described below) and an extension to evaluate the impact of the
observational learning mode. Finally, we included the single-item
learning control in the observational mode as an exploratory com-
ponent since there has been no previous test (to our knowledge) of
classification versus observational single-item learning of rela-
tional categories (see Higgins, 2017, for related work).

Method

Participants. This study and all subsequent studies were
cleared by the Institutional Review Board at Binghamton Univer-
sity. One hundred eighty-four Binghamton University undergrad-
uates participated for partial course credit. It was unclear ahead of
time what the mode effect size for same-category comparison
would be, and consequently how we would calculate an appropri-
ate sample size, for two reasons. First, no studies prior to the
current study have examined the effect of mode on comparison-
based relational category learning; althuogh a mode effect size
from the feature-based category learning literature could be used,
this would be arbitrary and likely inaccurate, given the emphasis
on comparison and relational categories in the present work. Sec-
ond, our intention was to analyze the data with a statistically
rigorous method (generalized mixed effect regression), which ac-
counts for random effects of participant and item. Estimating
power and sample size requirements in this case requires an
estimate of both participant and item variability; thus, a previous

effect size alone would be insufficient to estimate an appropriate
sample size.

In these cases, an accepted approach is to generate/simulate data
from a model that is fitted to data that is representative of the target
effect and random effects, fit the model again to the newly simu-
lated data, and then run the intended statistical test across many
different runs (Arnold, Hogan, Colford, & Hubbard, 2011; Green
& MacLeod, 2016). The degree to which the test finds an effect
where one exists, across different numbers of simulated subjects, is
then used to calculate power and estimate an appropriate sample
size. We report these simulations below. The sample size we used
(nsubjects � 31, nobservations � 2418) was hoped to provide suffi-
cient power. However, either way, the data in this experiment is
essential for constructing an appropriately powered experiment.

Materials. The training and testing phase stimuli consisted of
36 unique, Stonehenge-like arrangements of rocks—examples can
be seen in Figure 1. Rocks varied in their size, shape, and color. As
in our previous studies, the stimuli comprised three relational
categories (category labels in brackets): monotonicity (Besod)—
defined by a monotonic decrease in height of the arrangement from
left to right; support (Makif)—characterized by the presence of a
rock being supported by two other rocks, forming a sort of bridge;
and symmetry (Tolar)—captured by the presence of two same
color rocks of similar size and shape, one stacked atop the other.
Each arrangement belonged to only one of the three categories. Of
the 36 stimuli, a subset of 24 was used as the training set (eight per
category) and 12 were reserved for use at test (four per category).
The subsets matched those used in Kurtz et al. (2013), and subsets
were held constant across participants (though the order was
randomized for each participant). For comparison conditions,
training stimuli were presented in pairs. The pairings were ran-

Figure 1. Example stimuli pertaining to all three experiments. Each row
represents a different category. Archaeological stimuli in the center column
were used for training and the within-domain test. Mobile stimuli in the
right column were used as far transfer stimuli. See the online article for the
color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

4 PATTERSON AND KURTZ



domly generated for each participant according to their condi-
tion—all same-category pairs or a 50-50 blend of same- and
different-category pairs.

To assess far transfer of category knowledge, a set of 15
mobile-like stimuli (colorful, geometric objects connected with
vertical lines, as if hanging down from a platform; see Figure 1)
was used. Each mobile conformed to one of the three relational
categories from training, five mobiles per category. Compared to
the training and testing stimuli, the mobiles were dissimilar in their
surface characteristics (in color and shape of objects) and the
orientation of the category-defining core in each item was reflected
over the X-axis.

Procedure. In a between-subjects design, participants were
randomly assigned to one of six conditions. Four conditions used
comparison learning: same-category classification (n � 30),
mixed-pairs classification (n � 31), same-category observational
(n � 31), and mixed-pairs observational (n � 32); and two
conditions used the traditional one item per trial: single-item
classification (n � 31) and single-item observational (n � 29). All
participants received an archeological cover story and the follow-
ing instructions: “Your overall goal is to figure out what makes a
given rock arrangement belong to one of the three types: Besods,
Makifs, or Tolars. You will be tested on your knowledge of each
type later.” The following instructions were given to comparison
conditions (the same instructions were stripped of two-item and
comparison language in the single-item version):

On each learning trial, you will see two rock arrangements. [Obser-
vational: You will be shown the correct type for each arrangement to
help you learn; Classification: Try to figure out the correct type for
each arrangement. Use the mouse to select your response. A box will
appear around the arrangement that you should respond to. You will
be given feedback at the end of each trial to help you learn]. At first
you will not understand what makes them belong to a type, but before
long you should become quite good at recognizing the different types.
Remember that there are three different styles for arranging the rocks
into configurations. Looking at the two arrangements together can
help you learn these types. Try your best to gain mastery of the names
of each type and what makes an arrangement belong to those types.
Learn as much as you can before the test!

Comparison conditions—training. Training consisted of two
cycles of 12 paired stimulus trials, totaling 48 stimulus exposures.
At the beginning of each trial, two side-by-side stimuli were
presented and remained visible until the trial was complete. In the
classification conditions, the stimuli were presented on the screen
for 500 ms before a box appeared that randomly queried one of
them. At the same time, response buttons appeared below the
stimuli and participants were asked for the category of the queried
item. They selected their response using the mouse and were shown
visual confirmation of their selection. Participants were then queried
about the other item, made a response, and were shown visual con-
firmation of their selection. Following both responses, participants
were shown simultaneous feedback for each item indicating (a)
whether or not their response was correct, (b) the correct category of
the item (in green), and (c) if incorrect, the category they responded
with (in red). In the observational conditions, the correct category
labels appeared below the stimuli 500 ms after stimulus onset and
remained on screen for the duration of the trial. When the partic-
ipant finished studying an item pair they continued to the next trial

with a mouse click. Participants in both classification and obser-
vational conditions had as much time to engage with each trial as
they wished. To be clear, the same-category and mixed-category
conditions followed the same procedure with the only difference
being whether the two items were from the same category for
every pair or for half of the pairs. Note that we did not use an
orienting task to encourage comparison before each trial (as in
Kurtz et al., 2013) in part because it is a somewhat awkward
component of the task and in part due to evidence that enhancing
the invitation to compare had little impact.

Single-item conditions—training. Training consisted of two
cycles of 24 randomized, single-item trials, totaling 48 stimulus
exposures (equal to the comparison conditions). A single stimulus
was presented at the start of each trial and remained visible until
the trial was complete. The classification and observational con-
ditions paralleled their comparison counterparts. In the classifica-
tion condition, participants were asked for the category of the item,
made a response, and were given visual confirmation of their
selection. Following their response, they were presented feedback
identical in nature to the comparison classification conditions. In
the observational condition, participants were presented with a
single labeled item. Onset times for the membership query and
response buttons (classification) or label presentation (observa-
tional) were the same as the comparison group. As in the compar-
ison conditions, single-item conditions were permitted as much
time as desired for each trial.

Assessment. Following training, all conditions performed an
identical assessment sequence. The sequence consisted of a within-
domain test followed by a far transfer assessment. The within-
domain test presented the 24 “old” rock arrangements from the
training set and 12 new arrangements in a randomly intermixed
order for each participant. After the within-domain test, the 15
mobile stimuli were presented in random order for each participant
in the far transfer phase. Both the test and transfer trials employed
an endorsement format: on each trial a single item was presented,
the participant was asked if the item belonged to a given category,
and participants gave a yes/no response. This measure of catego-
rization performance is similar to, but distinct from, both the
classification and observational learning tasks. The endorsement
task reduces any transfer appropriate processing advantages (Mor-
ris, Bransford, & Franks, 1977) that might result from a perfect
task match between training and testing phases. As our primary
interest was in how well knowledge could be extended beyond the
exemplars encountered during the learning phase, old test items
were each presented once while the new test and transfer items
were each presented twice (once with the accurate and once with
an inaccurate category label).

Results and Discussion

Learning phase. Although our primary interest concerns per-
formance at test (where we have common dependent measures
across conditions), we first report on accuracy and time on task
data from the learning phase. Accuracy data from the classification
groups were modeled trial-wise using generalized linear mixed
effect regression with the lme4 (Bates, Mächler, Bolker, &
Walker, 2015) and lmerTest (Kuznetsova, Brockhoff, & Chris-
tensen, 2017) packages in the R environment (R Core Team,
2015). Trial number and presentation format were used as fixed
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effects. Subject was included as a random effect, however the
random effect for item was omitted, as it was unclear how to
adequately represent both one and two concurrent items (depend-
ing on condition) within the model. All classification conditions
demonstrated evidence of learning with all significantly perform-
ing above the chance level of .33 (ps � .05). A reliable advantage
in training accuracy was found for mixed pairs comparison (M �
0.65, SE � 0.03) over single-item (M � 0.54, SE � 0.04; � �
0.50, SE � 0.20, Wald Z � 2.46, p � .014), which is consistent
with the findings of Kurtz et al. (2013). Also in keeping with
previous and preliminary work, same-category comparison (M �
0.59, SE � 0.03) once again failed to show an advantage over the
single-item control, p � .28. The observational groups have no
accuracy data during the training phase.

It is also useful to evaluate the learning modes for differences in
time on task since it is conceivable that an advantage could be
attributable merely to increased study time. Time on task included
the entire amount of time from stimulus onset until the participant
advanced to the next trial. Median time on task values were
extracted for each participant and these data were subjected to a
linear regression. Descriptive statistics reflect adjusted means and
standard errors. The analysis showed that, across presentation
formats, observational learners (M � 3.80, SE � 0.31) spent
significantly less time on each trial relative to classification learn-
ers (M � 4.74, SE � 0.31); p � .05. Probing this difference
further, we found it was underpinned by a reliable effect of mode
for the comparison groups (ps � .05), but not the single-item
group. As such, we can conclude that an advantage for the obser-
vational mode (as we predicted) would not be attributable to more
study time since there was in fact less.

We also looked at the effect of presentation format on time on
task. Mixed pairs learners (Observational: M � 5.08, SE � 0.46;
Classification: M � 6.59, SE � 0.47) spent marginally more time
(ps � .07) than same pairs learners (Observational: M � 3.89,
SE � 0.47; Classification: M � 5.37, SE � 0.47), and both types
of comparison spent more time than single-item learners (Obser-
vational: M � 2.30, SE � 0.48; Classification: M � 2.27, SE �
0.47) which is unsurprising given there are two stimuli and clas-
sification decisions per trial; ps � .05.

Test phase. Adjusted means and standard errors for all test
item types can be seen in Table 1. See Figures 2–4 for old item,
new item, and transfer performance, respectively. Like the training
data, the accuracy data for the test and transfer phases were
modeled trial-wise using binomial generalized linear mixed effect
regression models. These models included trial number, presenta-
tion format, learning mode, and the presentation format by learn-
ing mode interaction as fixed effects. The random effects structure
was determined through model comparison via Akaike’s informa-

tion criterion starting with the maximal model. The model failed to
converge with the inclusion of random slopes under the random
effect for item, so the final random effects structure included only
random intercepts for participant and item. As we have specific
questions/hypotheses we seek to test in the present work, the
model employs treatment contrasts, the reference group of which
is shifted to address these different hypotheses. The initial model
included same-category comparison under the observational mode;
this speaks to the mode effect for same-class pairs, whether same-
class pairs provides an advantage over one-at-a-time presentations
in the observational mode, and the interaction between these
factors. The model was then releveled such that the classification
mode was in the reference to assess for a corresponding compar-
ison between same-category classification and single-item classi-
fication. The same process was repeated, but with mixed pairs in
the reference to address our questions relevant to the mixed pairs
group.

Another important consideration—for both the current and sub-
sequent experiments—is the issue of power. How many partici-
pants are required to achieve appropriate power for each item type
individually (old, new, and transfer) and across item types (i.e., all
item types collapsed)? Our core interest is in whether the classi-
fication mode is harmful to same-category comparison. Using the
SIMR package (Green & MacLeod, 2016) for R (R Core Team,
2015), we fit four models to the data from the same-category pairs
group—one each for the old, new, and transfer item subsets as
well as one to the full assessment-phase data, collapsed across item
type. Each model included mode as a fixed effect and participant
and item as random effects. We applied the SIMR powerCurve
function to each of these models, setting the number of simulations
to 500. The function (a) simulates new data from the original
model; (b) fits a new model on the simulated data; and (c) conducts
a test for significance. The function repeats this process 500 times
at each of 10 levels of n per cell (3, 9, 16, 22, 29, 35, 42, 48, 55,
and 61) to determine the power at each sample size. The simula-
tions showed adequate power (�80%) for the collapsed data at the
sample size we used but indicated the individual item types were
somewhat underpowered (70%, 76%, and 69% on old, new, and
transfer items, respectively; power curve analysis, and analyses for
all experiments, can be found in the OSF link https://osf.io/w8
gue/?view_only7c1c0b80a9604bed9934b24c5b699b49). To achieve
80% power on the individual item types, approximately 42, 36, and 39
subjects per cell are needed for old, new, and transfer items, respec-
tively (which we satisfy in Experiment 2).

However, given our prediction that the classification mode is
disruptive to same-class comparison learning—and not that the
effect should manifest focally on one or another item type—the
collapsed data are sufficient. Though somewhat underpowered, we

Table 1
Adjusted Means and Standard Errors

Test item type

Same-category comparison Single-item Mixed pairs comparison

Classification Observational Classification Observational Classification Observational

Old test .78 (.04) .92 (.02) .85 (.03) .84 (.03) .82 (.03) .89 (.02)
New test .72 (.05) .86 (.03) .77 (.04) .74 (.04) .78 (.04) .80 (.04)
Transfer .70 (.04) .85 (.03) .74 (.04) .74 (.04) .73 (.04) .78 (.03)
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offer the item type analyses as well—though a degree of caution
should be taken in their interpretation.

Effects of learning mode. Consistent with our predictions, the
same-category comparison group performed reliably better in ob-
servational mode than in classification mode—that is, with the
guess-and-correct cycle removed. We observed advantages for the
collapsed data (observational � classification; � � 0.86, SE �

0.24, Wald Z � 3.53, p � .0004), as well as for the old items
(observational � classification; � � 1.15, SE � 0.31, Wald Z �
3.67, p � .0002), new items (observational � classification; � �
0.89, SE � 0.25, Wald Z � 3.55, p � .0004), and far transfer items
(observational � classification; � � 0.85, SE � 0.28, Wald Z �
3.01, p � .003). This finding strongly suggests that the guess-and-
correct cycle obstructs the benefits of same-category comparison.

Figure 2. Mean old item test performance by condition—Experiment 1. Values represent adjusted means. Error
bars represent �1 SE. † p � .10. � p � .05. ��� p � .001. See the online article for the color version of this figure.

Figure 3. Mean new item test performance by condition—Experiment 1. Values represent adjusted means.
Error bars represent �1 SE. �� p � .01. ��� p � .001. See the online article for the color version of this figure.
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In evaluating same-category comparison against the single-item
control, the enhanced performance for the observational same-
category comparison learners led to a significant learning mode
(classification, observational) by presentation format (single-item,
same-cat comparison) interaction for the collapsed data (� � 0..88,
SE � 0.35, Wald Z � 2.51, p � .01), and also for old items (� �
1.22, SE � 0.44, Wald Z � 2.77, p � .006), new items (� � 1.05,
SE � 0.35, Wald Z � 3.00, p � .003), and transfer items (� �
0.82, SE � 0.40, Wald Z � 2.03, p � .04). Across each dependent
measure, the interaction was characterized by a significant com-
parison advantage under the observational mode (collapsed: � �
0.55, SE � 0.25, Wald Z � 	2.23, p � .03; old items: � � 0.75,
SE � 0.32, Wald Z � 	2.32, p � .02; new items: � � 0.79, SE �
0.25, Wald Z � 3.11, p � .002; transfer items: � � 0.65, SE �
0.29, Wald Z � 2.26, p � .024), but not under the classification
mode (ps � .11).

These results are compelling for several reasons. First, these
findings clearly show that same-category comparison is an effec-
tive way to learn relational categories—as expected under the
theoretical framework of comparison developed in the study of
analogy (Gentner, 1983, 2010; Gentner & Markman, 1997). By
bringing shared relational structure between examples into align-
ment, learners were better able to discover and become knowl-
edgeable about deep, relational properties that defined each cate-
gory; this greater knowledge led to substantial performance
advantages on all of our dependent measures. As we have made
clear, learning mode critically determines the impact of same-
category comparison. The present results support the interpretation
that the guess-and-correct cycle of classification learning is dis-
ruptive to fruitful same-category comparison, and this clarifies
previous failures to find comparison effects in the relational cate-
gory learning literature (Kurtz & Boukrina, 2004; Kurtz & Gent-
ner, 1998). Second, previous work with attribute categories has

shown pure observational/passive learning to be either equivalent
or disadvantaged relative to classification/feedback learning when
category membership is the target of assessment (Ashby, Maddox,
& Bohil, 2002; Edmunds, Milton, & Wills., 2015; Estes, 1994;
Levering & Kurtz, 2015; Thai, Krasne, & Kellman, 2015). Al-
though a mixture of feedback and passive learning has been found
to produce learning enhancements over either mode independently
(Thai et al., 2015), we demonstrate for the first time that learning
solely in the observational mode has outperformed feedback train-
ing on a test of category membership. The observational mode did
not provide a generally stronger platform for relational category
learning, as the single-item groups did not differ as a function of
learning mode on any of the dependent measures; ps � .4. This
shows that comparison processes, specifically, are interrupted by
the classification mode and that the observational mode benefits
comparison by removing this interruption.

Effects of mixed-pairs comparison. With regard to the con-
ceptual replication of prior work using mixed pairs, we found that
the mixed pairs learners did not differ from single-item learners in
either mode on any of the item types individually or collapsed
across item types (ps � .17). As for the extension to learning
mode, we observed only a marginal advantage of the observational
mode for the mixed pairs group on old items (observational �
classification; � � 0.56, SE � 0.30, Wald Z � 1.83, p � .07),
however this did not carry through to the new or transfer items—
nor did the collapsed data reflect this difference. The failure to
replicate the findings of Kurtz et al. (2013) suggests that the
mixed-pairs effect is sensitive to variation in operationalization
(while another possibility is that one or the other result is anom-
alous). We consider two notable procedural differences that may
underlie the failure to replicate. First, to avoid transfer appropriate
processing advantages for classification conditions in the current
work, we used a category endorsement task. This contrasts with

Figure 4. Mean transfer performance by condition—Experiment 1. Values represent adjusted means. Error
bars represent �1 SE. � p � .05. �� p � .01. See the online article for the color version of this figure.
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the classification assessment used by Kurtz et al. (2013). Endorse-
ment is highly comparable to classification; however, it is possible
that the previously observed mixed pairs effect hinged critically on
similarity between the training and testing tasks. This seems un-
likely because the training classification trials included two items
and the test classification trials included just one.

The other notable difference is that the comparison orienting
task instructions used on each trial in Kurtz et al. were omitted in
the current study. Specifically, on each trial, the instructions told
participants to find a rock in one of the arrangements, consider the
role it played within the arrangement, and to find a rock that played
a corresponding role in the other arrangement. To address the
concern that the orienting instructions might be instigating an
object/attribute bias under same-category comparison, we dropped
these instructions from the current design and opted for a subtler
and more generic invitation to compare items in the pretraining
instructions. It is plausible that without these trial-to-trial orienting
instructions the power of mixed pairs comparison was lost—
particularly if the instructions help to orient learners to the type of
comparison they should engage in (i.e., same- or different-class
comparison), given the random alternation between the two types.
Although we do not have a direct experimental test at hand, the
present results suggest that the mixed-pairs approach may be
effective as long as it is combined with a direct invitation to
compare. Given the impressive results under the observational
mode, we were less interested in tracking down the circumstances
under which the mixed-pair approach succeeds. Instead we elected
to pursue two goals in the subsequent study: (a) replication of the
observational advantage and (b) a more direct examination of the
critical component that varies between same-category and mixed-
category learning: the impact of contrasting or different-category
pairs.

Experiment 2

The observational learning mode played a vital role in the
success of same-category comparison, but it did not exert a reliable
effect on mixed-pairs learning. This is somewhat surprising given
that half of the trials were same-category comparisons. The present
study is designed as a replication of the critical finding of Exper-
iment 1 (observational advantage for same-category pairs) and, in
addition, we look to understand the isolated impact of the
different-category pairs that constitute the other half of the mixed-
pair trials. This is expected to provide an important foundation for
future research addressing when and why a combination of same-
and different-category pairs is effective.

As such, we used a 2 (learning mode: classification, observa-
tional) � 2 (comparison type: same-category, different-category)
design. This design allows three things: (a) a replication of the
observational advantage for same-category comparison; (b) a con-
tribution to an emerging literature investigating same-category
versus different-category comparison for relational category learn-
ing (e.g., Corral et al., 2018; Higgins, 2017; Namy & Clepper,
2010); and (c) an evaluation of how learning mode specifically
impacts different-category comparison.

Copresentation of examples from different categories does not
provide a pathway to highlighting and abstraction of common
structure. Instead, per Structure-Mapping theory, we can expect
highlighting of alignable differences. Alignable differences (Mark-

man & Gentner, 1993a) are differences that are tied to a common
relational structure shared by two compared cases. In the catego-
ries we use, there are likely many alignable differences between
any two exemplars from different categories. However, very few
of these differences are tied to the structure that defines each
category. Given this, detection of alignable differences between
categories should not aid the discovery of the relational core
defining each class. This suggests that different-category compar-
ison should produce similar performance levels to same-category
comparison under the classification mode and single-item learn-
ing; and further that there is no reason to expect different-category
comparison to become effective with the removal of the guess-
and-correct cycle. On the other hand, if relational categories are
importantly rule-like in nature, one might reasonably expect re-
peated opportunities to directly compare one positive and one
negative example of each rule to be highly effective. Rather than
identification of similar structure within a category, the benefit
would accrue from identification of differentiated structure be-
tween categories—which can become a source of hypotheses (and
a basis for hypothesis testing) about the relational basis underlying
the categories. Further, if such category contrasts offer a separate
path for comparison-based relational category learning, two further
expectations arise: (a) once again, the observational mode ought to
produce an advantage by keeping open the door to comparative
processing that we believe gets closed off by the presence of the
guess-and-correct cycle; and (b) it is possible to interpret the
relatively poor performance observed in the mixed-pairs group as
arising from the two pathways working poorly in conjunction—
perhaps being undermined by the limited opportunities for each or
the switching costs between the two (a question for future re-
search).

Method

Participants. Two hundred undergraduates from Binghamton
University participated for partial course credit.

Materials and procedure. The materials and procedure
matched the comparison conditions of Experiment 1 with the only
difference being that the different-category comparison condition
used random pairs constrained to be from different categories. The
design included four conditions based on crossing two factors:
same-category classification (n � 49), same-category observa-
tional (n � 48), different-category classification (n � 51), and
different-category observational (n � 52). These cell counts pro-
vide sufficient power to both the collapsed data (94%) and each
item type individually (between 86.2% and 91%).

Results and Discussion

Learning phase. Although the primary focus is again on
performance at the test phase, we first address performance and
time on task data from the learning phase for classification learn-
ers. Accuracy data were modeled trial-wise using linear mixed
effects regression. Keeping consistent with Experiment 1, trial
number and presentation format were included as fixed effects and
subject was included as a random effect. Accuracy data indicated
that both classification learning conditions led to levels of perfor-
mance that exceeded chance (ps � .05). However, the same-
category (M � 0.60, SE � 0.02) and different-category (M � 0.59,
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SE � 0.03) conditions did not differ in learning accuracy. Time on
task was operationalized and analyzed as in Experiment 1 and a
similar pattern was found with observational learners (M � 5.32,
SE � 0.42) allocating a reliably smaller amount of time to each
trial relative to classification learners (M � 6.90, SE � 0.43); p �
.01. This was driven by a reliable difference on time on task for
different-category pairs (observational: M � 5.45, SE � 0.59;
classification: M � 7.23, SE � 0.61; p � .05) and a trend in the
same direction for same-category pairs (observational: M � 5.18,
SE � 0.59; classification: M � 6.57, SE � 0.60; p � .10). As such,
and as in Experiment 1, any performance advantage for the obser-
vational group cannot be attributed to greater processing time.
Further, comparison type did not lead to reliable differences in
time-on-task (ps � .4).

Test phase. Modeling and analyses for the test phase mirrored
those used in Experiment 1. Adjusted means and standard errors
can be seen in Table 2 and plots for old item, new item, and
transfer performance are shown in Figures 5–7. In accord with our
first goal of replicating the critical finding of Experiment 1, a
significant advantage for observational learning was once again
found over classification learning for the combined data (observa-
tional � classification; � � 0.61, SE � 0.19, Wald Z � 3.22, p �
.001) and across old items (observational � classification; � �
0.55, SE � 0.22, Wald Z � 2.56, p � .01), new items (observa-
tional � classification; � � 0.53, SE � 0.20, Wald Z � 2.65, p �
.008), and transfer items (observational � classification; � � 0.64,
SE � 0.22, Wald Z � 2.87, p � .004).

The second goal of this design was to evaluate leaning from
copresented pairs uniformly in the same category versus uniformly
in different categories. Across all dependent measures, no reliable
differences were found under either learning mode (ps � � .2).
This suggests that it was not the different-category trials per se that
negatively impacted the performance of mixed pairs in Experiment
1. Instead, it seems likely that the mixed-pair learning phase
represents a case in which doing some of two equally beneficial
things is less beneficial than sticking with one.

Although we do not wish to make too much of a null finding, we
note that the lack of a difference between the two types of com-
parison is consistent with pilot data in our laboratory—however,
these findings do not fit cleanly in the existing literature. On a
theoretical level, an emphasis on schema abstraction via
comparison-based learning would perhaps suggest an advantage
for same-category over different-category comparison. However,
on an empirical level, a recent set of results showed the exact
opposite—consistent advantages for different- over same-category
comparison in a variety of relational category learning domains
(Corral et al., 2018).

The difference in results between Corral et al. and the current
work can perhaps be understood as reflecting important differ-

ences in the set-up of the category learning tasks. One difference
is that the rock arrangement domain is not clearly alignable across
categories. Given that contrastive comparison has been shown to
facilitate noticing of key alignable differences with highly align-
able categories (e.g., positive feedback loop vs. negative feedback
loop; Smith & Gentner, 2014), contrastive comparison may have
facilitated the acquisition of these key differences in Corral et al.
(2018). A second notable difference is our use of a three-way
classification task. In two-way classification, the different-
category pair on each trial always makes the same distinction
between the same two classes—and further, when the learner
knows the category of one item in a pair, the category of the other
item can be directly inferred. In the three-class case, these advan-
tages do not hold—thereby limiting the power of contrastive
comparison-based learning. Future work will help to determine the
role of these factors and to solidify a theoretical basis for under-
standing the benefits of contrastive comparison in relational cate-
gory learning (particularly in the nonalignable case; though see
Corral et al., 2018, for discussion).

We have seen a replication of the observational advantage for
same-category comparison and no effect of type of comparison.
The remaining question is how learning mode affects different-
category comparison. We found that the different-category obser-
vational group reliably outperformed its classification counterpart
group across all dependent measures: collapsed data (� � 0.60,
SE � 0.19, Wald Z � 3.20, p � .001), old items (� � 0.71, SE �
0.22, Wald Z � 3.30, p � .001), new items (� � 0.59, SE � 0.20,
Wald Z � 2.98, p � .003), and transfer items (� � 0.52, SE �
0.22, Wald Z � 2.37, p � .02). This is consistent with our primary
theme: the guess-and-correct cycle restricts the potential to take
advantage of comparison opportunities—whether the comparison
benefits that arise are from identifying structural commonalities
within a category or identifying structural differences between
categories.

Experiment 3

Across two experiments, we have developed evidence that the
classification mode disrupts the benefits of comparison-based
learning. In this experiment, we ask what exactly drives the con-
siderable difference in test performance between the classification
and observational learning modes? The time-on-task data tell us it
is not a matter of exposure or processing time. One evident
difference between the modes is that classification is less passive
since it requires a response and outcome (i.e., the guess-and-
correct cycle), whereas the observational task just involves study-
ing the provided information. However, we know that the two
learning modes are informationally equivalent and equally effec-
tive in the single-item case (without comparison opportunities), so

Table 2
Adjusted Means and Standard Errors

Test item type

Same-category comparison Different-category comparison

Classification Observational Classification Observational

Old test .83 (.02) .89 (.02) .82 (.03) .90 (.02)
New test .75 (.04) .84 (.03) .76 (.04) .85 (.03)
Transfer .76 (.03) .85 (.02) .72 (.03) .82 (.02)
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there is little reason to believe it is something intrinsic to the
modes themselves. Instead, the action is in the interplay between
the category learning mode and the comparison opportunity.

The core hypothesis of these experiments has been that the
guess-and-correct cycle of the classification mode creates a per-
formance orientation that directs learners to focus more on gener-
ating their guesses, the correctness of their responses, and their
overall success level—at the expense of a more broad-based effort
to learn about the categories and draw upon comparison opportu-
nities (for more on learning mode and generative vs. discriminative
human category learning, see Kurtz, 2015; Levering & Kurtz,
2015). Besides performance orientation though, there is another
simple difference between the modes that may explain greater
utilization of comparison opportunities under the observational
mode: the latency of label presentation. With observational learn-
ing, the presentation of category labels occurs early in the trial, and
this may stand as an invitation through language to compare. A
range of empirical work shows that symbolic juxtaposition, that is,
the sharing of a common label, can promote comparison (e.g.,
Christie & Gentner, 2014; Kotovsky & Gentner, 1996). By con-
trast, classification learners do not see the correct labels until the
feedback period at the end of each trial. Thus, an alternative
hypothesis is that label delay, either solely or in concert with
performance orientation, leads to poorer utilization of comparison
opportunities and poorer learning.

To assess the impact of these two potential drivers on same-
category comparison, we introduce two new learning conditions
that are also informationally equivalent but occupy intermediate
positions on the continuum between the classification and obser-
vational modes. To ask our primary question of interest (whether

poorer performance in the classification mode is attributable to the
performance orientation of the task) we compare our first novel
condition—covert classification (CovClass), or classification
without a submitted response—to the classification mode. This
condition is just like standard classification learning except learn-
ers are instructed to make a private guess about the category
membership of the exemplars on each trial rather than submitting
an overt response. In this condition, learners are shown the pair of
unlabeled exemplars and the category options and are prompted to
make an internal guess about the items’ membership. After they
make their guess, participants click anywhere on the screen to view
the correct category labels for a brief, fixed period and are left to
self-evaluate their accuracy before the next trial begins. Given that
the learner knows that the experiment does not record their cate-
gory decisions during learning (and they are free to not even make
an internal guess if they do not wish to), this CovClass condition
should effectively reduce the performance focus. When the labels
arrive, it is less in this case about being right or wrong than it is
about getting useful information. On the view that the perceived
centrality of the guess-and-correct component competes with
learners’ engagement in comparison, we expected better test per-
formance in the CovClass condition relative to standard classifi-
cation—and greater similarity to the observational group.

To evaluate the label delay hypothesis for the observational
advantage, we compare our second new condition—observational
with delayed labels (ObsDelay) – to standard observational learn-
ing. The ObsDelay condition is just like observational learning but
has the key difference of the label presentation being delayed until
the end of the self-paced trial. In this condition, learners study the
pair of unlabeled exemplars in each trial for as long as they wish;

Figure 5. Mean old item test performance by condition—Experiment 2.
DiffCat and SameCat refer to different- and same-category pairs respec-
tively. Values represent adjusted means. Error bars represent �1 SE. � p �
.05. ��� p � .001. See the online article for the color version of this figure.

Figure 6. Mean new item test performance by condition—Experiment 2.
DiffCat and SameCat refer to different- and same-category pairs respectively.
Values represent adjusted means. Error bars represent �1 SE. �� p � .01. See
the online article for the color version of this figure.
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when they are finished studying, they click to see the category
labels for a brief, fixed period before the next trial begins. Thus,
this condition has the same label delay as classification learning
but does not have a guess-and-correct cycle, like standard obser-
vational learning. If the ObsDelay group is worse at test than its
standard observational control group, this would suggest that hav-
ing the labels early in the trial is an important facet of the mode
difference. Given previous literature showing benefits of labels
(e.g., Christie & Gentner, 2014; Davidson & Gelman, 1990; Gent-
ner & Namy, 1999; Kotovsky & Gentner, 1996; see Gentner,
2016), we expected that withholding label presentation until the
end of the trial might reduce comparison engagement to some
extent—evidenced by lower performance relative to standard ob-
servational training. Although we did expect label delay to exert
some effect, we expected a more distinguished effect of response
removal (i.e., performance orientation).

Method

Participants. One hundred forty-two undergraduates from
Binghamton University participated for partial course credit.

Materials and procedure. The materials were the same as
those of Experiments 1 and 2. Participants were randomly assigned
to one of four learning mode conditions in a between-subjects
design. All four conditions used same-category comparison: ob-
servational (n � 34), observational with delayed labels (n � 36),
covert classification (n � 36), and classification (n � 36). Partic-
ipants received the same archeological cover story and task fram-
ing (i.e., that their overall goal was to figure out what makes a
given rock arrangement belong to one of the three categories and

that they would be tested on their knowledge of each category
later) given in Experiments 1 and 2. In the pretraining instructions,
all participants were told they would see two arrangements on each
trial. Following this instruction, learners received condition-
specific instructions that prepared them for their particular condi-
tion. Classification learners were told that they were to figure out
the correct type for the arrangements on each trial and to select a
response. CovClass learners were told they were to make a guess
in their head about the type the examples belonged to; after making
their guess they were to click anywhere on the screen to see the
exemplars’ type. ObsDelay learners were told they were to click
when they were ready to continue, but that they would see the
correct type for each arrangement before the arrangements were
removed. Observational learners were simply told they would see
the correct type for each arrangement. Following these condition-
specific instructions, all conditions were given the same reminder
given in Experiments 1 and 2:

Remember that there are three different styles for arranging the rocks
into configurations. Looking at the two arrangements together can
help you learn these types. Try your best to gain mastery of the names
of each type and what makes an arrangement belong to those types.
Learn as much as you can before the test!

As in Experiments 1 and 2, the training phase consisted of two
cycles of 12 paired stimulus trials, totaling 48 stimulus exposures.
At the beginning of each trial, two side-by-side stimuli were
presented, and these remained visible until the trial was complete
(see Figure 8 for a schematic of the procedure for each condition).
A series of modifications were made to the procedure of the
classification task (relative to Experiments 1 and 2) to allow the
cleanest comparison across the conditions in the present design.
Given our interest in label delay, we presented labels at stimulus/
trial onset to the observational condition—instead of at the 500-ms
delay used in the former experiments—to have a clear distinction
between immediate and delayed label presentation groups, rather
than groups with differing degrees of delay. Similarly, we pre-
sented the query and category response buttons at stimulus/trial
onset to the classification and CovClass conditions as well to bring
them into correspondence.

In the classification group, participants were queried for a joint
response for both stimuli; time to make a decision was uncon-
strained. The participant selected a response by clicking one of
three buttons that corresponded to the categories in the learning
domain. The use of a joint response for the two examples repre-
sents a deviation from Experiments 1 and 2. Given that learners
pick up quickly in a same-category paradigm that the items will be
from the same category each time, we shifted to a joint response to
remove the annoyance of making two identical responses each trial
and to eliminate variability in when participants noticed this reg-
ularity; preliminary work showed performance under joint and
independent responses to be nearly identical. When classification
learners selected their response, the button they clicked showed
them visual confirmation of their selection. Following the classi-
fication decision, the correct category labels were shown for 1
s—leaving participants to self-evaluate the accuracy of their deci-
sions. Unlike the previous experiments, the feedback included only
the category label, not whether the response was correct or incor-
rect, to equate the label/feedback experience across conditions as
closely as possible without altering the fundamental nature of the

Figure 7. Mean transfer performance by condition—Experiment 2. Dif-
fCat and SameCat refer to different- and same-category pairs respectively.
Values represent adjusted means. Error bars represent �1 SE. � p � .05.
�� p � .01. See the online article for the color version of this figure.
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task. Given the importance of label presentation timing in this
design, we fixed the duration of feedback to 1 s.

The procedure for the CovClass group was just like the classi-
fication group except that they were instructed to make an internal
guess (rather than submitting a response) at each prompt and, then,
to click the mouse to see the correct category labels for 1 s. The
category buttons, though not functional, were presented on screen
as a reminder of the labels and for consistency with the standard
classification condition. If a learner did click on the category
buttons, nothing happened (i.e., there was no visual confirmation
of a selection). We note that the CovClass procedure left partici-
pants the option to disregard the instructions and not make a guess
on any trial (if they fully disregard the instruction to make a guess,
then it is essentially the ObsDelay condition)—we relied on the
natural tendency to make a prediction in this type of task as well
as the tendency among participants to attempt to follow experi-
menter instructions that are not especially arduous.

The ObsDelay condition followed exactly the same procedure as
the CovClass condition except participants were not asked to make
guesses and were neither presented with a category query nor
category buttons. Participants were able to study the exemplars in
an unlabeled state for as long as they wished and then clicked to
see the category labels for 1 s.

The observational condition was just like that in Experiments 1
and 2 but with the label-onset exception noted above—that is,
labels were presented with the examples at trial onset instead of at
a 500-ms delay. The common assessment phase was conducted
just as in Experiments 1 and 2.

Results and Discussion

Learning phase. Learning phase accuracy data for the clas-
sification learning group (the only group that makes a recorded
response) showed a level of performance that was significantly
better (M � .57, SE � .02; p � .05) than chance (.33). As in the
experiments above, we looked at time-on-task by taking the me-
dian time-on-task for each participant and predicting them with

condition in a linear regression. We found that all other conditions
(Observational: M � 4.03, SE � .35; ObsDelay: M � 4.58, SE �
.37; CovClass: M � 3.86, SE � .23) spent significantly more time
on each trial compared to classification learners (M � 2.64, SE �
.15). This is the opposite of Experiments 1 and 2, but this is
attributable to the change in task format from two classification
decisions to one on each trial for classification learners. It should
be noted that this time-on-task reversal is informative. Although a
potential concern noted in the previous experiments was that
observational learners might spend more time on each trial and that
greater processing time might explain the advantage, the opposite
concern is also valid—that shorter trial durations could aid learn-
ing, perhaps by permitting better comparisons to be made across
trials. Thus, if shorter time-on-task values explain the observa-
tional advantages observed above, then the classification group
ought to outperform the observational group here. However, as
seen below, this is not the case.

Test phase. As in the above experiments, trial-wise accuracy
data were modeled using binomial generalized linear mixed effect
regressions. Models included trial number and mode condition as
fixed effects. The random effects structure was fit using perfor-
mance on the old item test data, starting with a maximal random
effects structure (random intercept for participant, random slope
and intercept for item). As with Experiments 1 and 2, inclusion of
the random slope impeded model convergence; the final random
effects structure included only random intercepts for participant
and item. Adjusted means and standard errors can be seen in Table
3. Figures 9–11 illustrate performance on old items, new items,
and transfer items, respectively. We report on the collapsed data as
well as the individual item types below. The simulations derived
from Experiment 1 suggest the collapsed data are well-powered
(
87%). Item type analyses achieved respectable power, though
slightly short of convention in some cases (76.4%, 80.5%, 76.3%
for old, new, and transfer items respectively).

The observational advantage. Replication of the core mode
effect is of critical importance, given the slight alterations that

Figure 8. Procedure by condition in Experiment 3.
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were made to the procedure (i.e., participants provide only a single
guess for both items and participants self-evaluate their accuracy
given the correct label). As preliminary work suggested, and as
was seen in the above experiments, we again found better perfor-
mance for learners that received same-category comparison oppor-
tunities in the observational mode, relative to those trained with the
classification mode. The advantage was evidenced by a reliable
effect for the collapsed data (� � 0.67, SE � 0.25, Wald Z � 2.70,
p � .007), as well as for old items (� � 0.65, SE � 0.29, Wald Z �
2.24, p � .03), a trend for new items (� � 0.41, SE � 0.24, Wald
Z � 1.76, p � .08), and a reliable advantage at transfer (� � 0.70,
SE � 0.26, Wald Z � 2.63, p � .009). These findings show a
degree of generalizability of the learning mode effect, taking into
account the minor changes made, and provide confidence in the
adjusted paradigm for evaluating the two novel conditions.

Effect of delayed label presentation. With confidence in our
paradigm, we now turn to the primary goal of this experiment:
evaluating the performance-orientation and label-delay accounts of
the observational advantage. We first approach the issue of
whether the observational advantage can be explained by a greater
invitation to compare through language, facilitated by the imme-

diacy of label presentation. If initial labels invite superior compar-
ison engagement relative to final labels, we should see poorer test
performance for the ObsDelay group relative to the standard
observational group.

Accuracy data at test showed the ObsDelay group did not differ
reliably from standard observational on old items (p � .14), new
items (p � .34), or transfer items (� � 	0.51, SE � 0.27, Wald
Z � 	1.93, p � .054) – nor did it differ on the collapsed set
(� � 	0.46, SE � 0.25, Wald Z � 	1.85, p � .064). The transfer
result could be interpreted as a marginal effect (with higher accu-
racy in the standard observational condition). With considerable
caution, this could reflect weaker comparison opportunities (and
stifled abstraction) as a function of having briefly presented labels
presented at the end of the trial.

To get additional clarity, we look at how the ObsDelay group
fares against standard classification. Although the standard obser-
vational group broadly outperformed standard classification, it’s
delayed label counterpart did not reliably differ from classification
on any of our dependent measures (ps � .39). Looking at these
data collectively, they suggest that the presentation of class labels
later in the trial timeline impairs the effectiveness of the observa-

Table 3
Adjusted Means and Standard Errors

Test item type Observational
Obs delayed

labels
Covert

classification Classification

Old test .87 (.03) .82 (.03) .84 (.03) .78 (.04)
New test .81 (.04) .78 (.04) .79 (.04) .75 (.04)
Transfer .82 (.03) .73 (.04) .80 (.03) .70 (.04)

Note. Obs delayed labels � observational with delayed labels.

Figure 9. Mean old item test performance by condition—Experiment 3.
Values represent adjusted means. Error bars represent �1 SE. � p � .05.
See the online article for the color version of this figure.

Figure 10. Mean new item test performance by condition—Experiment
3. Values represent adjusted means. Error bars represent �1 SE. † p � .10.
See the online article for the color version of this figure.
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tional mode to some degree—which may in part account for the
observational advantage. Though these findings relate to some
extent to the labeled comparison literature (e.g., Christie & Gent-
ner, 2014; Davidson & Gelman, 1990; Gentner & Namy, 1999;
Kotovsky & Gentner, 1996), they do not speak to the presence/
absence of labels, as this literature is typically concerned with.
Although not wishing to make much of a null result, our results
suggest a novel qualification to these findings—that it might not
merely be a matter of if a label is provided, but also when that
might dictate whether a label serves as an invitation to compare.
We see this as a useful area for future research.

Effect of explicit guessing and response collection. Al-
though we found some evidence suggesting that label delay con-
tributes to the mode difference, the relatively weak evidence
makes it difficult to accept as the key driver. How then does
reducing the performance emphasis of the classification mode
impact comparison-based learning? We speculated that learners
may focus on the guess-and-correct component of the trial in
standard classification at the expense of the comparison opportu-
nity and that, by softening the performance emphasis through
making internal, unforced guesses, the CovClass group would
engage in deeper comparisons and demonstrate better perfor-
mance. The collapsed data did not show a reliable difference
between on the two conditions (� � 0.40, SE � 0.24, Wald Z �
1.65, p � .099)—though they suggested a possible trend. Looking
at the item types individually, we found that the two conditions did
not differ on old items (p � .16) or new items (p � .27)—though
the CovClass group showed a numerical advantage on both. How-
ever, at transfer the CovClass group exhibited reliably higher
accuracy than standard classification (� � 0.54, SE � 0.26, Wald
Z � 2.10, p � .035). This indicates that reducing the performance

focus of the task environment could have allowed learners to more
deeply engage in and benefit from comparison.

The effect was not seen across the board, but it is quite possible
that far transfer is a more sensitive dependent measure, that is, one
that depends more heavily on the degree of successful abstraction.
In conjunction with this finding, we also note there were no
differences between the CovClass and standard observational
groups on any of our test measures (ps � .39) which prompted us
to conduct two one-sided tests for equivalence. Using a region of
similarity equal to six percent (ε � .06), we found a trend for
equivalence on both the collapsed item set (p � .069) and old
items (p � .10), as well as reliable equivalence on both new and
transfer items (ps � .05). With the same parameters, we then tested
the equivalence of the observational group to all other groups; it
was not found to be equivalent to any other condition on any of our
measures (ps � .13). To be clear, our intent with this analysis is
not to assert that the CovClass group is learning in a similar way
to the standard observational group—the predictive focus of clas-
sification is almost certainly distinct. Rather, we argue that relax-
ing the task’s emphasis on performance facilitated the making of
higher quality comparisons—leading to a degree of abstraction and
performance comparable to the observational group.

We must also consider whether there are alternate explanations
of the covert classification advantage—could it be better to not
have to fully formulate, explicitly commit to, and execute a re-
sponse based on one’s guess? A memory-based perspective sug-
gests that under some circumstances a wrong guess may produce
a competing association (Knight, Ball, Brewer, DeWitt, & Marsh,
2012; Vaughn & Rawson, 2012)—and it is conceivable that
greater commitment to that guess might strengthen the association.
However, if removing inaccurate associations explained the ben-
efit of the observational mode, we would expect the observational
mode to generally lead to advantages over classification on tests of
category membership—this is not seen in our single-item learning
results, nor in the attribute category learning literature (Ashby et
al., 2002; Edmunds et al., 2015; Estes, 1994; Levering & Kurtz,
2015). Another possibility is that greater time spent on task by
CovClass learners might explain the better performance. However,
as we have seen across the all three experiments, time-on-task has
not provided a strong correspondence with accuracy differences.
Rather, what happens during the trial appears paramount.

Finally, we note that the two new learning conditions introduced
in the present experiment depended on learners doing what we
asked of them. As such, we can neither verify that CovClass
learners made predictions, nor verify that ObsDelay learners re-
frained from making any. However, the pattern of evidence sug-
gests learners largely completed the task as asked. Had ObsDelay
learners made spontaneous class predictions of their own accord
without instruction to do so, the ObsDelay task would transform
into a classification mode, but a covert one. In addition, had
CovClass learners skimped on their class predictions, the task
would effectively reduce to ObsDelay (with the addition of cate-
gory buttons on the screen). Thus, the effects observed above can
be seen to reflect participants engaging in different activities. An
added consideration is that, although the data suggest participants
generally complied with the instructions, it is likely some made
spontaneous predictions or refrained from making any. To the
extent this is true, the performance gains (CovClass) and decre-

Figure 11. Mean transfer performance by condition—Experiment 3. Val-
ues represent adjusted means. Error bars represent �1 SE. † p � .10. � p �
.05. �� p � .01. See the online article for the color version of this figure.
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ments (ObsDelay) of the manipulations may be underapproxi-
mated.

General Discussion

Across three experiments, we explored the role of learning mode
in relational category learning. This investigation followed from a
series of failed attempts to find a theoretically predicted advantage
for same-category comparison over one-at-a-time presentations. In
the above studies, we used a learning mode manipulation to (a)
examine predictions from the structural alignment view of an
advantage for same-category comparison over single-stimulus pre-
sentations; (b) evaluate the impact that removing the guess-and-
correct cycle has on relational category learning more broadly by
testing its effect with or without comparison and under different
types of comparison opportunities; and (c) isolate the mechanics of
how the guess-and-correct cycle might affect the success of com-
parison.

Regarding our revamped effort to test predictions from the
structural alignment view, we found strong evidence in Experi-
ment 1 that same-category comparison leads to a theoretically
predicted advantage over sequential item presentations. However,
we found that learning mode plays a critical role in whether this
advantage emerges. Specifically, when same-class comparisons
were made under the classification mode, comparison opportuni-
ties did not provide any benefit—consistent with previous work
(Kurtz & Boukrina, 2004; Kurtz & Gentner, 1998; unpublished
pilot data for the present investigation). However, when learners
engaged with comparison opportunities in the observational learn-
ing mode, we found the elusive advantage over single-item pre-
sentations and unprecedented accuracy levels on both within- and
across-domain tests of knowledge.

These findings serve as a resolution to the tension between the
straightforward predictions of the structural alignment view and
the previous failures to find same-category comparison effects in
relational category learning studies. To the best of our knowledge,
this is the first time a benefit of pure same-category pairs (over
single-item) has been shown within the context of an inductive
relational category learning paradigm. This finding thus contrib-
utes to existing evidence that the structural alignment process is
integral to the learning and transfer of relational categories (Kurtz
et al., 2013) and indicates that structure-mapping theory (Gentner,
1983, 2003) is a useful framework through which to understand
relational category learning. This however comes with an obvious,
but notable, caveat: the theory can only hold explanatory value
within a context that is hospitable to engaged alignment. We
explore this point further below.

To place the present findings in a fuller context, the notion that
the guess-and-correct task disrupts successful comparison process-
ing is consistent with other findings in the existing literature. One
potential aspect of this is a resource shortfall caused by combining
guess-and-correct with comparison. Competition for different
types of resources in a dual-task load paradigm (Waltz, Lau,
Grewal, & Holyoak, 2000) or a prior anxiety-inducing task (Tohill
& Holyoak, 2000) have been shown to lead to diminished rela-
tional processing. Our argument is not that relational category
learning is impossible due to a resource limitation; this follows
from comparison benefits under the classification learning mode
when explicit instructions to focus on the comparison component

are provided (Kurtz et al., 2013). Instead, we contend that when
comparison and classification-based category learning are com-
bined—without forcing attention to the comparison piece—the
allocation of resources is not favorable for garnering comparison-
based outcomes. An important question embedded in this is
whether allocation issues arise from the guess-and-correct cycle
generally or, more specifically, guess-and-correct when the task
goal is classification. Evidence from several research groups
shows facilitated relational category learning under an inference-
based learning mode (Erickson, Chin-Parker, & Ross, 2005; Gold-
water, Don, Krusche, & Livesey, 2018; Higgins, 2017). The in-
ference task (receiving partially specified category members and
predicting the missing information) is supervised and involves a
guess-and-correct cycle but differs from classification learning in
promoting broad-based, generative-style knowledge of each cate-
gory rather than invoking a discriminative-style, narrow focus on
diagnostic features that minimally separate the categories. We
have argued that both observational and inference learning tasks
are notably more generative in nature than classification learning
(Kurtz, 2015; Levering & Kurtz, 2015). Collectively this high-
lights two competing accounts that should be tested going forward.
One is that the guess-and-correct cycle diverts resources from
comparison irrespective of the type of knowledge engendered by
the task. Another is that the discriminative, diagnostic knowledge
encouraged by classification is less useful for comparison. Under
this view, guess-and-correct—for the goal of classifying—selec-
tively diverts resources from comparison. Examining performance
when comparison is nested in the classification, inference, or
observational modes will help deliberate between these accounts.

Despite being born out of an interest to determine the efficacy of
same-class comparisons, the present line of inquiry represents a
broader effort to understand how relational category learning pro-
ceeds under different learning circumstances. An important part of
this effort is determining if the selected learning modes differ
under standard format: one-at-a-time presentations. Although
learning mode played an important role for the comparison for-
mats, we failed to find an effect of mode on any of our measures
under the single-item format. We note that the lack of a mode
effect serves as an important qualifier to the observational advan-
tage seen under the comparison formats. An alternative interpre-
tation of the observational advantage might have been that the
observational mode is generally better than the classification mode
for relational category learning. However, the lack of an observa-
tional advantage under single-item indicates that is not the case;
the observational mode served not as a general prop to learning but
rather a prop to comparison learning specifically.

We also note that, although our investigation of the classifica-
tion and observational modes under one-at-a-time presentations is
the first to do so with relational categories as the target of learning,
many comparisons between these learning modes have been made
in the attribute category learning literature (e.g., Ashby et al.,
2002; Edmunds, Milton, & Wills, 2015; Estes, 1994; Levering &
Kurtz, 2015; Thai et al., 2015). These comparisons have been
made using different assessment measures, different category di-
mensionality, and different category structures—including rule-
based structures (Ashby et al., 2002; Edmunds et al., 2015; Le-
vering & Kurtz, 2015), which are perhaps the most relatable to
relational categories. This research has been somewhat mixed.
Some has shown no difference between observational and classi-
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fication learning on tests of class membership (Ashby et al., 2002;
Levering & Kurtz, 2015), while other research has found an
advantage for classification over observational (Edmunds et al.,
2015). In the cases of Ashby et al. (2002) and Levering and Kurtz
(2015), the lack of difference between the modes was likely driven
by a ceiling effect—attributable to the simplicity of the rule (a
unidimensional rule) —which is not the case in the current work.
However, Edmunds et al. (2015) used a more complex, conjunc-
tive rule as the target of learning (avoiding ceiling performance)
and showed an advantage was tipped in favor of classification
learning. Given the inherent differences between even rule-based
attribute categories and relational categories (which are thought of
as rule-like; Gentner & Kurtz, 2005) and the likely difficulty
differences between the category structures used in the current
work and previous attribute studies, we do not wish to make much
of a cross-literature comparison. However, the available data sug-
gest that which of these modes will lead to the best learning
outcome under one-at-a-time presentations may depend on
whether attribute or relational categories are the target of learning.
This highlights a growing need for research relating and dissoci-
ating attribute and relational category learning, in the hopes of
identifying a unified mechanistic account of category learning.

Another important facet of this investigation was examining the
effects of learning mode on two additional types of comparison:
pure different-category pairs and mixed pairs (50%/50%, same-
and different-category). We found only a nonreliable, numerical
advantage for the mixed pairs observational group over its classi-
fication complement. However, mode exerted a pronounced effect
under different-category pairs—an observational advantage mir-
roring that found for same-class pairs. What does this common
effect of the observational mode for both same- and different-
category pairs say about the role mode is playing in comparison?
For one, it indicates the benefit of the observational mode does not
arise by affecting the particular mechanics of a specific type of
comparison—that is, it occurs regardless of whether commonality
or difference finding is the goal. Instead, this pattern suggests the
general mechanics of comparison (engaged, joint consideration)
are being affected by the observational mode. This pattern is
consistent with the central thesis of this article—that the additional
task of classification detracts from engaged comparison making—
and suggests the manipulation worked as intended.

If the observational mode generally encourages joint consider-
ation, the absence of a mode effect under mixed pairs is a seem-
ingly puzzling fact to integrate. Given that the mixed pairs group
is made up of equal parts same- and different-category compari-
son, one might expect mixed pairs to respond to the mode manip-
ulation in a way that is similar to either of its parts alone. However,
recall that the goal of the mode manipulation was to restore the
primacy of comparison within the task environment. The relation-
ship between the observational mode and improved learning out-
comes should only exist in cases where deeper engagement in the
underlying form of comparison holds the potential to improve
learning—which we elaborate on further below.

We believe there are two related distinctions between mixed
pairs learning and either of the uniform comparison learning
formats that make mixed pairs a more challenging and less fruitful
learning platform. First, there is a clear distinction in the strategies
that are required; in either pure format, the learner consistently
makes comparisons of a given type. In the mixed format, however,

the learner must frequently switch between same- and different-
category comparison. It should be expected that, although there are
common mechanics in both types of comparison, the strategies in
each differ; same-pairs comparisons should foster a commonality
finding strategy while different-pairs should encourage a differ-
ence finding strategy. Second, it should be expected that the
category makeup of a given pair influences the strategy for com-
parison. In either pure comparison format, there are three subtypes
of comparison (AA, BB, CC, and AB, AC, BC, for same- and
different-category conditions, respectively). Under the mixed pairs
format, by contrast, learners must contend with all six of those
randomly interspersed subtypes during training, each of which
requires its own strategies—that is, which objects and relations are
relevant to attend to, and which are not. In sum, mixed pairs
learning—in the flavor we investigate in this study—requires
much more task switching than either pure variety of comparison.
Given the costs to category learning known to arise from strategy
switching (e.g., Crossley, Roeder, Helie, & Ashby, 2018; Erick-
son, 2008), we believe having to randomly switch between differ-
ent comparison strategies incurs a comparable cost during mixed
pairs learning. In further support of this point, previous work from
our lab has shown that learning from a 75%/25% ratio of same- to
different-category comparison did not differ from another condi-
tion with the same ratio flipped on far transfer items. However,
both weighted conditions outperformed a condition that had a
50%/50% ratio (Patterson & Kurtz, 2014; see Figure 12). Collec-
tively this work suggests that having greater consistency in the
comparison strategies used during learning leads to better learning
outcomes.

The present work also speaks to the relative efficacy of same-
category and different-category comparisons for learning rela-
tional kinds. We did not find the type of comparison to exert an
effect in the present work—comparable learning and transfer was
found to arise from both types. In the case of between-category

Figure 12. Mean accuracy by condition from Patterson and Kurtz (2014),
presented as a poster at the 36th annual meeting of the Cognitive Science
Society. The within-category (WC) weighted condition consisted of a
75/25 ratio of same-category pairs to different-category pairs. The
between-category (BC) weighted condition was the same, but with the
ratios for same-category and different-category pairs reversed. The mix
condition consisted of a 50/50 mixture of same and different-category
pairs, much like the mixed pairs condition in the present investigation.
Values represent raw means. Error bars represent �1 SE. � p � .05. �� p �
.01. ��� p � .001. See the online article for the color version of this figure.
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comparison, the advantage does not arise from aligning common
structure between copresented examples, given the many relevant
but nonalignable relational differences between categories. There
are several possibilities for what mechanism is at play. The first
is a natural extension of structure-mapping theory in which the
alignable differences are highlighted relative to common structure
at the domain level (rather than category level). Another possibility
consistent with structure mapping theory is the idea that productive
alignments are made between each item in a different-category
comparison opportunity and its activated generic category repre-
sentation. A third possibility, indirectly explained by the alignment
view, is that different-category comparison may be effective
through a failure of alignment (see Corral et al., 2018, for discus-
sion). Under this view, contrast is an eliminative process in which
relations present in both copresented exemplars are ruled out while
relations contained by one exemplar, and not the other (a failure of
alignment), are considered as potentially category defining. In all
these possibilities, the observational mode benefits both different-
category and same-category comparison because it is the compar-
ison process that allows productive use of item copresentation and
the guess-and-correct cycle stands in the way of its engagement.
There remains much theoretical and empirical work to be done on
the mechanisms behind the efficacy of contrastive comparisons;
deliberation between these, and other, possibilities represent an
important area for further work.

Contrasting the present results with other work, Corral et al.
(2018) found a marked advantage for different-category compar-
ison across a series of experiments addressing two-choice rela-
tional category learning. Although the relative efficacies of pre-
sentation type differ between these two investigations, we do not
view the findings as conflicting. Instead, we find it likely that
which type of comparison is best will be driven by the nature of the
learning problem. First, we note that three-way classification cre-
ates a drive for positive (generative-style) category knowledge,
whereas two-way classification can be more about finding a
boundary (discriminative-style). With three-way classification
there are as many boundaries as there are categories (unlike
two-way classification). Further, two-way classification can suc-
ceed by mastering one category without requiring any knowledge
at all of the alternative. The other major difference in the learning
conditions is that the categories used by Corral et al. were quite
similar to one another—with much overlapping, alignable struc-
ture between categories. Categories A and B were as follows
across three experiments: “bigger object on the right” versus
“smaller object on the right,” containment versus support, and
“objects of same color also match in shape” versus “objects of
same color also match in size.” In all cases, one or a few alignable
differences distinguish the categories (note that Corral et al., 2018,
also offer a theoretical analysis in which relational learning tasks
operate more like feature-based category learning if relational
information is encoded as flat, rather than structured, representa-
tional content), and in this light, it is unsurprising that different-
category comparisons facilitated better learning than same-
category comparisons as they would better serve to highlight the
small number of category-relevant differences (Carvalho & Gold-
stone, 2014; Markman & Gentner, 1993a; Smith & Gentner,
2014); learning purely through same-category comparisons, on the
other hand, would make these category-relevant differences more
difficult to detect.

In the present work, there is very little category-relevant struc-
tural overlap between categories—that is, there are many relevant
but nonalignable differences (i.e., not connected to common struc-
ture) between the relational structures that define each category.
Under these circumstances, different-category comparison should
be expected to be less effective, whereas same-category compar-
ison should be more effective. This perhaps general principle of
comparison-based learning is also reflected in feature-based cate-
gory learning, where interleaving exemplars of different classes
has been shown to benefit the learning under high between-
category similarity while blocking exemplars of a given class aids
the learning when there is high within-category similarity (e.g.,
Carvalho & Goldstone, 2014). Although a direct comparison of the
efficacy of same- and different-category comparison for learning
high-similarity and low-similarity relational categories has not
been empirically established, we see this as a promising avenue for
further research.

There is another important reason for manipulating category
similarity in future research: It may serve to broaden our under-
standing of the observational comparison advantage, across both
attribute and relational categories. Though our study focuses on
relational category learning, the literature suggests that the obser-
vational over classification benefit may be general to both attribute
and relational categories—though this benefit is not uniform (Car-
valho & Goldstone, 2015). Carvalho and Goldstone (2015) crossed
learning schedule (blocking vs. interleaving) with learning mode
(observational vs. classification) in feature-based category learn-
ing. Importantly, they used categories that had high within-
category similarity and high between-category similarity. They
found an observational advantage at test for the blocking (sequen-
tial same-category comparison) group, but not for the interleaving
group (in fact, a classification advantage was found). In a
follow-up experiment using the same design, Carvalho and Gold-
stone (2015; Exp 2) maintained the high between-category simi-
larity of the prior experiment—however, they used categories with
low within-category similarity. In this case, the observational
benefit for the blocking group went away.

Although the data suggest that the observational comparison
advantage takes place in both relational and attribute categories, it
seems that there is a moderating factor in the similarity within and
between categories. Based on the available evidence, we put forth
a novel comparison load hypothesis that may direct future research
on learning mode and comparison. The hypothesis asserts that the
type of comparison (same- or different-category comparison) and
the category structure (dimensionality and the degree of within-
and between-category similarity) jointly determine the amount of
information that must be encoded. Circumstances in which suc-
cessful category learning depends on mapping and representing
many elements during comparison (i.e., high comparison load) will
benefit from the observational mode, as the mode does not itself
incur additional load or a competing goal. Comparison load is high
for same-category comparison when within-category similarity is
high as there are a larger number of common elements between
members that must be mapped, bound, and represented within the
comparison (relative to low similarity). Correspondingly, load is
high for different-category comparison when between-category
similarity is low, as a larger number of differences must be mapped
and represented (relative to high similarity). The currently avail-
able data are consistent with this hypothesis, however future re-
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search that manipulates mode, comparison type (same/different-
category comparison), within/between-category similarity, and
category type (relational or attribute) will be necessary to test the
hypothesis more fully.

Across three experiments, and under different kinds of compar-
ison, we showed that the classification mode erodes the quality of
comparison-based learning. Experiment 3 was aimed at elucidating
why the classification mode plays this role. Specifically, we ma-
nipulated both label onset in the observational mode—a potential
cue to compare—and the collection of responses in the classifica-
tion mode—a potential cue to the importance of the guess-and-
correct cycle within the learning task. Although we did not find
reliable evidence that label onset delay explains the mode differ-
ence, we did show a reliable impact of response collection. This
effect is consistent with the interpretation that classification, in-
cluded as a concurrent task to comparison, alters the learner’s
prioritizations within the learning task—shifting relative priority to
the guessing component and away from the comparison compo-
nent. Finding that learning improves by removing response col-
lection indicates, quite obviously, that what is perceived as central
to the learner is shaped by what is (seemingly) important to the
experimenter. Learners provide their response data and are given
corrective feedback on that data, which establishes the guess-and-
correct cycle as the task of chief importance. By prioritizing the
guess-and-correct cycle over the available comparison opportuni-
ties, learning was stifled. However, when the response collection is
removed—that is, the task is without cues indicating the priority of
the guess-and-correct cycle—the relative importance of the two
tasks is not established. As such, learners engaged more deeply in
comparison and learning outcomes improved.

This work has notable implications. For basic research interests,
our work clearly demonstrates the issues that arise from embed-
ding comparison within a classification learning task. This work
thus prescribes that future studies that seek to evaluate the efficacy
of comparison relative to other learning conditions should refrain
from nesting it within the classification mode. Though our work
only speaks to the integration of comparison and classification, we
expect similar effects to occur when other resource-demanding
tasks are nested within a classification learning task. For a cleaner
assessment of task-based manipulations in category learning, we
recommend using the observational mode. Further, given the prev-
alence of relational concepts in education and the importance of
comparison-based pedagogical techniques (Goldwater & Schalk,
2016), this work suggests that—irrespective of the type of com-
parison—educators should isolate comparison-based learning ac-
tivities from other potentially competing learning tasks. More
generally, by identifying a clear path for making comparison and
category learning function together to promote concept formation,
this broadens the applied potential of each of the techniques and
suggests an instructional approach that leverages the power of both
to improve upon existing methods. The present findings suggest
the possibility that other instructional techniques that rely on
comparison operating in conjunction with another task may show
better outcomes if the task that embeds comparison is conducted in
a passive mode. In terms of even broader consequences for the
learning sciences, there is widespread debate on the relative merits
of providing good answers to learn from versus withholding an-
swers to allow for active or discovery-based learning; in all such
cases there is the possibility that the success of an important, active

learning mechanism (alignment or otherwise) depends on the
learner having less to do at the same time—an idea supported by
the benefits of “passive,” worked-examples relative to active,
problem-solving-based learning, especially early in learning (At-
kinson & Renkl, 2007; Renkl, Atkinson, Maier, & Staley, 2002;
Sweller & Cooper, 1985).

In sum, side-by-side comparison is known to promote relational
learning, however the conditions of learning must support an
engaged effort at comparison. We believe that the traditional
classification learning paradigm does not provide adequate sup-
ports; however, removing the immediate performance emphasis
inherent in the guess-and-correct cycle opens the door to
comparison-based gains. These results are revealing about the
nature of core processes in higher-order cognition and how they
interact. In translational terms, our findings point to a promising,
but simple, recipe for promoting relational concept acquisition:
inductive category learning across pairs of labeled examples.
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